AD-A058 305 LOCKHEED MISSILES AND SPACE CO INC PALO ALTO CALIF PA=--ETC F/6 20/1
STAGGERED SOLUTION PROCEDURES FOR DOUBLY ASYMPTOTIC FLUID=STRUC==ETC(U)
FEB 78 K C PARKy C A FELIPPA, J A DERUNTZ DNAOO1=-76=C-0285 '

UNCLASSIFIED LMSC/D624324 DNA-4525F NL
5 IIIiII|IIII|IIIII||IIIII‘lIIIIlIIIIII|IIIII|IIIII||IIIII |IIIII|IIIII

C — —

078

DoC




"m |0 hee 2

==y
||||| 1] N
1=

I

s s

iz
()]

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAL OF STANDARDS 1963-3




NALEL NI anst s a s =

. 4‘ 200 307
lWEl - DNA 4525F

STAGGERED SOLUTION PROCEDURES FOR
DOUBLY ASYMPTOTIC FLUID-STRUCTURE
INTERACTION ANALYSIS

ADADS8305

Lockheed Palo Alto Research Laboratory
3251 Hanover Street
Palo Alto, California 94304

]

28 February 1978

Final Report for Period 26 April 1976—28 February 1978

DDC FILE -COPY;

nw 1w,

CONTRACT No. DNA 001-76-C-0285

APPROVED FOR PUBLIC RELEASE;
b DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY
UNDER RDT&E RMSS CODE B344076462 L0O2BAXYX97801 H2590D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, D. C. 20305




P R R e o s v - s

Destroy this report when it is no longer
needed. Do not return to sender.

e bt e,

j \
R
1
» ~
NG e
P——
S —— P ————— A A S N ———

n— b, el




)

(UD/VA b ﬁgL
UNCLASSIFIED £

SECUWLAS&FICATION OF THIS PAGE (When Data Entered)
’

REPORT DOCUMENTATION PAGE B e N e

. GOVT ACCESSION NO. CIPIENT'S CATALOG NUMBER
~
AD-£ 300 309 ( 7j

~

/ x| ; =S SRR Ma PERIOD COVERED
K Cj,’,L§TAGGERED SOLUTION PROCEDURES FOR DOUBLY ASYMPg/‘; FinaI,Repsit, nz_2?§i07
Feb

TOTIC FLUID STRUCTURE INTERACTION ANALYSIS 26 Apr 76—28

WBER
| — /e ZILMSCAD624324/
/7 LB COAT AT

I Ve 7. AUTHOR(.. ———— GRANT NUMBER(sS)
? /'/CD K. C./Park /
i C. A./Felippa

J. A. éDeRuntz I

R

Ton 391 76- c-zZs_J

1ZATION NAME AND ADDRESS 10. PSOGRAMOERLEEENT PURMOBJEEé:;’ TASK
: Lockheed Palo Alto Research La -
( 3251 Hanover Street /’/‘g SubtaSy LA2BAXYX978-01
| Palo Alto, California 94304 A L
I ). CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT-DH
Director (i;fz:) 28 Febrmery 1978
Defense Nuclear Agency wng;1mvv€rv¥1mt€r“
wa5h1ngt0n, D.C. 20305 15. SECURITY CLASS (of this report)

UNCLASSIFIED

15a. DECLASSIFICATION 'DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited. |

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

‘ This work sponsored by the Defense Nuclear Agency under RDT&E RMSS Code
! B344076462 LO2BAXYX97801 H2590D.

i
. ’ 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
N Fluid-Structure Interaction Staggered Solution Procedures
N Numerical Stabilization
\\ Doubly Asymptotic Approximations
\y
\

0. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This report examines direct time integration techniques for the transient
response analysis of fluid-structure interaction problems treated with the
Doubly Asymptotic Approximation. Efficient solution of the equations of motion
is achieved by a modular computer implementation in which separate fluid and
structure analyzers are interfaced through extrapolation of the coupling terms.
Because conventional realization of this technique is handicapped by severe
time-increment limitations, a versatile formulation is developed that circum-

| vents such limitations, achieving unconditional stability.

DD , ifs”ﬂ 1473 EoiTiON OF 1 NOV 65 1S OBSOLETE UNCLASSJFIED
7 8 A P ! SECURITY CLASSIFICATION orm‘pms (When Data Entered)
V7 14 044 =270 418 .15

L — i i = = =




UNCLASSIFIED

& SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) k’“




PREFACE

The authors express their appreciation to Dr. T. L. Geers for his counseling during the per-

formance of the work reported herein.

BY g . B
ISTRIBUTIOR, ST £OGES

J Dist.  AVAIL. endor SPECIAL

g




_—

Section

I

B

ELT

v

Vi

VII
VIII

IX

Appendix

TABLE OF CONTENTS

ENERODUCTEON. < & W e o o 6 © = o 5o s o = lals o = « &
1.1 SOLUTION PROCEDURES. . « « « « « s o o o o s o s o
1.2 STAGGERED SOLUTION PROCEDURE . . . . . . . . . . .
1.3 OUTLINE OF THIS REPORT . . . . ¢ &« « o« « « « o @

GOVERNING EQUATIONS ¢ . o o o o o s o o o« o« o o o« o o =
2.3 THE MODEL PROBLEM. . o o o ¢ & c o o o shs s 5w &
2.2 TEMPORAL DISCRETIZATION. . . . . @ s m e e %
2.3 RANGE OF NON-DIMENSIONAL PARAMETERS el isioi sl vl e

PRESSURE EXTRAPOLATION FORMULATION. . . . . . . . . .

3.1 ITERATION CONVERGENCE. . . . . . . . « « ¢« « « « &
3.2 TEMPORAL STABIELIEY ¢ o o o = ¢ v = a laa s = & s =
3.3 OBSERVAREONS NCEL e e el o ot el il o) fwatar o e o e
3.4 VELOCITY EXTRAPOLATION PROCEDURE . . . . . . . . .
SOURCE OF INSTABILITY « ¢ ¢ « 5 o w « o s & ¢ s o o & »
4.1 CHARACTERISTICS OF THE FULLY-IMPLICIT FORMULATION.
4.2 CHARACTERISTICS OF THE PE FORMULATION. . . . . . .
4.3 SUMMARY OF MAIN FINDINGS . . . « « « « « « « &

STABILIZATION « s « o « o o o o o o o v 8 5 @ & « ¢ 5 »

5.1 PRESSURE-INTECRAL EXTRAPOLATION (PIE) FORMULATION.
5.2 DISPLACEMENT EXTRAPOLATION (DE) FORMULATION. . . .
5.3 OTHER FORMULATIONS . « ¢« « ¢ ¢ o o o g w me b e

ITERATION CONVERGENCE OF STABILIZED FORMULATIONS. . . .

6.1 SELECTION OF A PREDICTOR . . . . - e
6.2 SINGLE-PASS STABILIZED PROCEDURES o o ® .
6.3 OBSERVATIONS ON SINGLE-PASS SOLUTION STABILITY .

NUMERICAL EXPERIMENTS . . ¢« ¢ « ¢« ¢ ¢ o o s o @
IMPLEMENTATION CONSIDERATIONS . . . . . . . . . « . .
CONCLUDING REMARKS: « « ¢« ¢ « ¢ ¢ s ¢ o o s o s o o &
REFERENCES: o ¢ ¢ ¢ v v o o s ¢ % & o s 5 o o s« & s & &
DERIVATION OF MODEL EQUATIONS . . . . ¢« « « « &« « « &
SUBMERGED SPHERICAL SHELL . « « ¢« « ¢ ¢« ¢ o o ¢ ¢ o o &
A STABILITY ANALYSIS OF THE PIE FORMULATION . . . . . .

13

13
14
15
17

18
18

22

24
24

25

26
26
27
29
30
33

35

37




LIST OF ILLUSTRATIONS

Stability Limit of the PE Formulation (11) Treated by the Trapezoidal Rule
and the Two-Step Predictor (13) as a Function of the Number of Passes (k)
per Time SEEP. « o /s s s m sl e 5w s e e e e e e e e s e s = s e

Effect of Iterations on Stability Characteristics of Staggered Procedures.

Root Locus Diagram of the Fully-Imp11c1t System (19) in the Laplace—
Transform-Variable Space . . . . S G e e S S e

Stability Limit of the Difference-Differential Form (24) of the PE Formu-
lation with the Two-Step Predictor (22). « ¢« « « o « © ¢ o« o « o o o o =

Control Loop Representation of the Pressure Extrapolation Procedure (24) .

Global Error for PIE and DE FormsS. . « « s & 5 o & « & = & « % 5 & « &

I
[
.

.
.
.
.

Global Error for Improved DE Forms, x =

I
=
o
.

Global Error for Improved DE Forms, x =

15

16

19

21

23

31

32

32




LIST OF TABLES

Table Page
¥ Range of Non—ﬁimensional Paraneters. o o v e ol e s se s el el s sl e G e 12
2 Model Formulations for Staggered Solution Procedures . . . . . « « « o« . . 25
3 Iteration Convergence Characteristics of Staggered Solution Procedures . . 26
4 Predictors Considered for the Present Study. . . . . « « ¢« ¢« « « « « « « . 27
5 Stability Characteristics of Single-Pass Solutions . . . . . . . . . . . . 28
6 Matrix Implementation Forms for Stabilized Procedures. . . . . . . . . . . 33 \
7 Values of z, w, and u for Some Axisymmetric Modes of a Steel Shell in
Water with €fr = ORI o o oy ol i G s o e e el e e e s B-2




O o, AR W

e |

SECTION 1
INTRODUCTION

In recent years, increasing use has been made of the Doubly Asymptotic Approximation
(DAA) [1-3] for the transient response analysis of submerged structures. Application of the
DAA in conjunction with discrete methods of structural analysis leads to a large set of
coupled ordinary differential equations (ODE) in time. Such equations are either solved
directly in terms of the physical coordinates, or indirectly through a dimensionality-
reduction transformation from physical to generalized coordinates. This report deals exclu-

sively with the first approach.

The physical coordinates associated with the direct time integration approach are the

response degrees-of-freedom of the structural model (the structural displacements) and the

nodal values of the scattered pressure field at the contact surface (the fluid pressures).

Fluid-structure interaction effects result in the coupling of the fluid pressures and struc-
tural displacements normal to the contact surface (the 'wet displacements') through a matrix

differential equation.
1.1 SOLUTION PROCEDURES
Three general schemes can be followed for organizing the response calculations:

® Pressure Elimination Solution. Elimination of the fluid pressure equations results

in a differential system of equations in the structural displacements only; this

system is of third order in time.

® Simultaneous Solution. The fully coupled system is processed as one enticy, i.e.,

both displacements and pressures are simultaneously advanced through the use of a

fully-implicit integration scheme.

® Staggered Solution. The integration process is carried out in alternating stages:

the solution of either the structural or fluid system is advanced first, then the
other system is solved following a time extrapolation of the coupling term(s) as a

forcing function.

The first approach has the advantage of reducing the number of equations to be solved,
but introduces unsymmetric coefficient matrices that are fully populated in entry positions
pertaining to the "wet'" degrees of freedom. Furthermore, the appearance of third-order (or
higher) temporal derivatives of the displacement coordinates causes numerical difficulties in
the treatment of initial and jump conditions in shock-excited problems. (These difficulties
can be eliminated by passing to integro-differential forms, but then time integrals of

applied forcing terms must be carried along in the calculatioms.)

The second approach can be organized in terms of symmetric matrices and does not re-

quire special treatment to account for acceleration-derivative terms. Processing times

5
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ror large-scale problems become rapidly prohibitive, even in linear analysis, on account of
the matrix connectivity introduced by pressure/wet-displacement coupling blocks that may
extend across thousands of degrees of freedom. For example, the initial factorization of the
dynamic coefficient matrix for a model with 5000 structural and 250 fluid equations (a typ-

ical mix) would require roughly 3 hrs of CPU time on the CDC 6600 computer.
1.2 STAGGERED SOLUTION PROCEDURE

The staggered solution scheme consists of splitting the time integration task between
two loosely coupled processors, a fluid and a structural analyzer, with the interaction
effects being incorporated through an extrapolation mechanism. If certain practical restric-
tions (described in the body of the paper) are met, this strategy offers the important ad-

vantage of preserved program modularity, in the sense that the organization of the structural

time integration package is not sensibly affected. A general-purpose fluid analyzer may be
developed and checked out as independent of any specific structural code and eventually
"plugged in" as a modular component to interface with any large-scale structural analyzer.
Furthermore, subsequent improvements made in the fluid analyze~ will be essentially trans-
parent to the user, resulting in corresponding gains in efficiency. Additional advantages
accruing in the treatment of nonlinear structural response problems are discussed in the

section on implementation.

Given the usual proportion of structural to fluid equations (4:1 through 25:1 in three-
dimensional problems), the bulk of the computational effort is most likely to fall upon the
structural analyzer, which perceives the fluid only as an external force environment. It is
therefore reasonable to expect that the fluid-structure problem can be processed for only a
marginal increment in the cost required for processing the 'dry'" structure only (provided,
of course, that similar time increments and structural solution strategies are used in both
cases). The price paid for these computational advantages is the fact that satisfactory
numerical stability characteristics are much harder to achieve for the staggered procedure.
No such difficulties arise in the pressure-elimination or simultaneous solution procedures,
for which the selection of one of the many available A-stable time integration operators

suffices to secure unconditional stability.

The purpose of this report is to examine the fundamental algorithmic properties --
convergence, stability and accuracy -- of the staggered solution procedure when the fluid-
structure interaction is treated by the DAA. It will be shown that the simplest (conven-
tional) formulation of the staggered procedure for the structure/DAA equations suffers from
severe time-increment limitations due to stability considerations. Such restrictions
effectively rule out the use of the conventional staggered solution procedure as a general-
purnose method, although that scheme can work satisfactorily in a restricted class of

shock-excited problems.
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The main objective of this investigation is to find ways to extend the range of
applicability of the staggered solution procedure. It happens that a satisfactory stabiliza-
tion of that strategy can be achieved by a judicious modification of the original equations
of motion through a process of augmentation. There are a number of ways in which the fluid
and/or the structural equations can be augmented to produce the desired stabilization, but
only one survives if the practical constraint of limiting modifications to existing struc-

tural analyzers is imposed.
1.3 OUTLINE OF THIS REPORT

In the section following, equations of motion that govern a spatially-discretized,
fluid-structure interaction problem treated by the DAA are introduced. An associated two
degree-of-freedom system is derived and converted to dimensionless coordinates. This system
is time-discretized through application of linear multistep operators and the resulting
integration process is expressed in the conventional staggered solution form. A study of the
domain of convergence of the iterated process and of the temporal stability characteristics
shows that this formulation has a limited applicability range because of time-increment

limitations.

The source of instability of the conventional staggered procedure is then explored in
detail. This investigation is carried out by using a time-delayed continuous form of the
extrapolated coupling term (predictor) for deriving a difference-differential system. Exam-
ination of the characteristic equation of this system clearly shows that the onset of in-
stability is caused by the delayed feedback of fluid radiation damping from the fluid
equation into the structural equation. This result leads us to consider the use of "damping
augmentation' strategies that are often employed in the field of control theory to stabilize

systems with dead-time (delay) elements.

Several stabilized formulations are then developed by tailoring the governing equations
of motion in such a way that appropriate damping terms appear in the structural equations,
the fluid equations, or both. A study of the iterative convergence and temporal stability
of these forms show that they are globally convergent and remain unconditionally stable for

certain extrapolators.

An extensive series of numerical experiments has been conducted with the dual objective
of verifying the predictions of the stability analysis and of assessing the global accuracy
of the computed solutions ovi the two degree-of-freedom system. Representative results of
this series are presented. Practical considerations regarding the computer implementation
of the stabilized formulations to treat large-scale problems are then offered; special em-
phasis is placed on software modularity requirements. Finally, the main conclusions derived

from the present investigation are summarized.
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SECTION II
GOVERNING EQUATIONS

Consider a structure interacting with an acoustic medium through a contact boundary B,
henceforth referred to as the "wet surface." The structure and fluid are spatially dis-
cretized through the application of finite-element and boundary~integral techniques, respec-
tively. (It is important to note that the corresponding meshes on B are not necessarily

identical.) The resulting matrix equations of motion may be written as

Mi+Da+tEu =¢ +r-1a G +p)
L L 8
(1)
M _ g+ A = M =t &
pr gt BUSE A U (G0 =z et e i3 =3

where the first set of equations expresses dynamic equilibrium in terms of the structural
displacements, and the second set, the DAA, describes the {iuid-structure interaction at the
wet surface. (Recall that the number of structural equations is usually much greater than
the number of fluid equations.) 1In (1), M, D, and K are the structural ma=-, damping
and linear (or linearized) stiffness matrices, respectively; u, ES and r are the struc-
ture response displacements, dry-structure applied force, and nonlinear residual (pseudo-
force) vectors, respectively{ E§ = q 1is the scattered pressure vector and EF is the
incident pressure vector, appropriate to the fluid grid on B ; A 1is a diagonal matrix
embodying elemental areas of the fluid mesh on the wet surface B, ﬁf is the fluid mass
matrix as determined from an analysis of incompressible fluid motion appropriate to a dis-~
tribution of elemental sources on B, T 1is a generally rectangular transformation matrix
that relates structural displacements to the control points of the fluid grid on B , o

and ¢ are fluid density and speed of sound, respectively, and superscript T denotes

matrix transposition; finally, the superscript dot (') denotes temporal differentiation.
2.1 THE MODEL PROBLEM

The homogeneous linear (or linearized) part of (1) can be expressed as

L 2 W u & S Y
+ + - L&
T
990114 pcM T Mf 4 Q pchAlla 0
8




In the following study, the structural damping term D u will be systematically neglected,

as its effect on the response is in most cases negligible when compared to that of the fluid
radiation damping term TAq. An appropriate two degree-of-freedom problem associated

with the system (2), after setting D = 0, is

m_w+ k = - :
3 s ¥ ag

(3)

me ¢ + pcag = pcm w

where mes ks’ a and me are generalized quantities resulting from the projection of M,
K, A and M

A Mes respectively, on normal coordinates w and g that diagonalize the left-
hand side of (2). The derivation of (3) is presented in Appendix A. We note that (3a) rep-
resents a pressure-excited undamped mechanical oscillator whereas (3b) represents a velocity-

excited pressure-decay equation.

The system (3) can be further reduced to the non-dimensional form

£ X + w2 X =-y
(4)
v+t py= x
through introduction of the dimensionless variables
x = w/e » ¥ = gllpcy)
2 2 2
£=m/(pga) , w =k & /(mc)
(5)
u o= ms/(gmf) = an/mf
() = 3/3rt SN S

Ia Eqs. (5), 2 denotes a characteristic length of the problem, e.g., the radius of a sub-
merged cylinder or sphere; £ 1is a '"buoyancy ratio" (structural mass divided by displaced
fluid mass), w 1is a reduced vibration frequency, and u is a generalized-pressure decay
exponent. Note that the dot superscript has been redefined in (5d) to denote differentiation

with respect to the dimensionless time 1t , rather than physical time t.
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2.2 TEMPORAL DISCRETIZATION

We shall consider the use of implicit, one-derivative linear multistep (LMS) methods
to effect the time discretization of (4). For a constant step-size h = At , an m-step

method can be presented in the compact form

= S z
z =6 €, * hn (6)

where =z stands for a scalar or vector state variable, the subscript n 1is the time station
index, § 1is the generalized time step Bh (B being a method coefficient), and the his-

: Z : : . :
torical vector hn is a linear combination of m past solutions:

m
z 3
hn B —Egi(ai zn~i 3 Si L Zn—i) (7

Specific LMS integrators are characterized by the coefficients B8 , a, and Bi' For example,

the trapezoidal rule (m = 1) has a, = -1, B = Bl = 0.5.

For reasons to be justified later, we introduce a pair of LMS integrators

x =8x +hX,8 =8h
n x'n n X X
(8)
Y
= + =
v nyn ho Gy Byh
to treat the reduced equations (4). The resulting algebraic system is
2 2 TS X X
&+ o g Yo, = -nyn TE N e
9
S i s y
(1 + 6y u) yn xn u hn

The secondary state variables, velocity in and pressure integral y, » are calculated from

the integrators (8), i.e.

.
I

X
(xn - h /8,
(10)
= ?
hn + Gy yn

<
1

|
Eqs. (9) and (10) form the basis for the analysis of the conventional staggered solution

procedure.
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2.3 RANGE OF NON-DIMENSIONAL PARAMETERS

The time-discretized system (9) contains four non-dimensional parameters: § , w , u
and h . The first three embody spatial characteristics of the problem whereas h intro-
duces the effect of the time integration stepsize. It is of interest to the forthcoming
discussions on the applicability of various implementations of the staggered procedure, to

exhibit typical ranges assumed by such quantities. This information is collected in Table 1.

For ¢, w, and p , two limit conditions and an illustrative case are shown. The

cavity condition is the limit of modal motions heavily dominated by the inertia of the fluid,

viz. low-frequency motions of a very thin submerged shell. The dry mode condition is
realized by structural motions that do not interact with the fluid, such as torsional modes
of structures of revolution. The illustrative problem of a submerged spherical shell is of
interest because this is one of the few geometries amenable to exact analytical modal treat-
ment, as discussed in Appendix B. Ranges quoted for the dimensionless time increment h =
cAt/% are tabulated according to the temporal characteristics of the excitation, which

determines the energy-spectrum characteristics of the response.

1
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TABLE 1. Range of Non-Dimensional Parameters

Limit Cases I1lustrative Case
Parameter Cavity Dry Structural Mode Submerged Spherical
a
Shell
L a, ks-— 0 mf**O, a—0
L.
w 0b 20 0 to ~pce’ n
= 2
g 0 © ~ Pe to ~pen
u 1 indet. l ton +1
Shock-Excited Problems® Structural Dynamics
Early-Timed Late-Time® Problemsf
Response Response
h 0.01-0.1 1-100 >>1

§ =og/p = ratio of shell and fluid densities, ¢ = c¢_/c = ratio of sound speeds in
shell and fluid, e = thickness~to~radius ratio, n = highest circumferential wave
number retained. These equations are derived in Appendix B, where numerical values
of w , & and u are tabulated for a particular combination of  , € and e.

ks tends to zero faster than m .
Problems characterized by wave propagation effects.

Period during which shock wave starts to envelop the structure (1 < 1);
characterized by high-frequency structural motions, high radiation damping,
relatively small hydrodynamic inertia forces.

Period characterized by low-frequency structural motions, dominant hydrodynamic
inertia, and low radiation damping (usually t % 10).

Problems characterized by low-frequency motions throughout.

L




SECTION III

PRESSURE EXTRAPOLATION FORMULATION

The simplest formulation of the staggered scheme suggested by the format of Eqs. (9), is

the pressure extrapolation (PE) formulation, which may be described as follows. Assume that

solutions up to the (n-1)th time station are known. We first predict the pressure 9§ at

tn , insert this into the right-hand side of (9a), solve for the structural displacement L

obtain the velocity in from (10a), insert this into (10b) and finally solve for the pressure

Yy . This corrected value may be used in an iterative setting if desired. We proceed now to

n
analyze the iteration convergence and temporal stability properties of the PE formulation.

3.1 ITERATION CONVERGENCE
Using k as an iteration cycle index, the iterated PE scheme may be written
(1 S . (k-1)
Ex xn Bx hy ¥ G bx
K = 152 e (11)
e, 3 - ™ w58+
i | n n’’ x y
where
2 B0 ok
Ex = 1+ Bx TR o A
B =80 g e = i
y
(12)
X = hi/g
b = hX+6§ h>,b = -uh’
X n X n y n
The initial 9é0) = 9§ may be obtained from a simple predictor such as
0} . N .
b 2+Y Y. ¥ Ypuy (13)

where Yy 1is an extrapolation parameter (actually, extrapolation corresponds to y > 0 . and

interpolation to y < 0)

The iterative scheme (11) can be recast into the standard form

, (0

g 2 (KD

= ~

+ b (14)

st e




where g? = (xn, yn), b embodies terms independent of k , and the iteration matrix R
is
-1
E 0 0 8 _hx 0 E
X X Bg hx y .
E = = Ex 3 (15)
1B 0 0 Y10 1 !

L] 4

The iteration (14) converges if and only if the spectral radius «k of R (largest eigen-

value modulus) is less than 1. Since K(R) = Bx x/(Ex Ey) , the convergence condition is
3 2
A = ¢
h/g < (1 + B, @ ) (1 + ey W)/Bx (16)

The right-hand side of (16) is minimized for modal motions with © -+ 0 , ¥ - 0 , in which

reads
KiS 1/6x (17)
The structural equations will normally be treated with an A-stable integrator to account for

the wide frequency spectrum present in most discrete models. But for all A-stable LMS

methods, BX lies in the range of % to 1. Consequently,

x = h/g§ < 2.0 (18)

is the best that can be achieved by using the trapezoidal rule (Bx %) in (8). Note that
the convergence conditions are not only independent of the pressure predictor (as one would
expect of a linear system), but of the historic term composition of the integrator pair (8)

as well.
3.2 TEMPORAL STABILITY

The numerical stability of the PE formulation has been studied for a variety of LMS
integrators, assuming the two-step predictor (13), and a fixed number (k) of passes per
time step. No details of the analysis will be given here, inasmuch as the conventional
staggered procedure is not recommended for general use. Only one illustrative example and

some general observations will be offered.

The stability region of the PE formulation is always x-bounded, 1i.e., parameters w

and u play no role in the analysis (in more precise terms, the worst combination is
w =y = 0) , and neither does the fluid integrator (8b). For a specific structural inte-

grator (8a) and the one-parameter predictor (13), the stability regions can be conveniently

14
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displayed in the (y,x) plane. Figure 1 shows those curves for the trapezoidal rule. The

largest stable x is 4, which can be attained for the one-pass solution (k = 1) if
Y = -3 (the predicted pressure value is the mcan of the last two values). If the process is
iterated, the peak of the stability region is rcduced; and as k + @ the stability limit

approaches the predictor-independent value (18).

It should be stressed that a time increment limited by a x = h/f of order 2 to 4 is
unacceptable for a general-purpose integration package. The constraint can be practically met
only in a limited class of problems, such as cne early-time shock response of submerged struc-
tures. If the response is dominated by low-frequency structural motions, however, that incre-
ment limit is intolerably small; so small, in fact, that computational error accumuLﬁtion and
computation time become critical. (The largest stable x found by the authors is é, which

requires the implementation of a fairly elaborate time-advancement procedure.)
3.3 OBSERVATIONS

The detailed study of the range of convergence of the iterated PE formulation can be

justified by the following considerations. Suppose we had found that the iteration (11) con-

verges for the entire range (or at least a wide range) of parameters. The converged solution
o)

n

iim) would then be identical to that furnished by the fully-implicit scheme resulting
4 X =hi¢

>

4

'3 UNSTABLE

N )

-’ o
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Figure 1 Stability Limit of the PE Formulation (11) Treated by the
Trapezoidal Rule and the Two-Step Predictor (13) as a

Function of the Number of Passes (k) per Time Step
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Characteristics of Staggered Procedures

from the simultaneous solution approach, as sketched in Figure 2. Under such assuptions,

the stability region of the iterated PE formulation must approach that of the fully-implicit
scheme. The latter can be made unconditionally stable by selecting a suitable A-stable LMS
method. Iteration would then provide a simple strategy for transmuting the one-pass, con-
ditionally stable semi-implicit procedure into an unconditionally stable scheme of greater
accuracy; this strategy might have led to a potentially favorable tradeoff between iteration
cost and the ability to utilize larger time steps.

As increasing k does not actually improve stability to any significant extent, it

appears that there is no point in iterating at all if the PE formulation is used. (In

linear problems, an iteration cycle costs essentially the same as one advancing step, but

higher accuracy can be generally achieved through equivalent reductions in the stepsize.)

Finally, it should be noted that PE iteration can be made to converge over the entire
feasible domain of parameters by the application of a Jacobi acceleration strategy [4,§ 4.3.1)

to (11). The resulting iteration process is virtually identical, however, to those ensuing

from stabilization of the original equations (4) by augmentation, as described in later

sections.
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3.4 VELOCITY EXTRAPOLATION PROCEDURE

An alternative formulation of the conventional staggered solution procedure can be
based on velocity extrapolation (VE) applied to the fluid equation (9b). The algorithmic
properties of this formulation are identical to those of the PE formulation, and need not

be discussed further.




SECTION IV
SOURCE OF INSTABILITY

This section probes more deeply into the underlying causes of the iteration divergence
and temporal stability limitations exhibited by the conventional (PE, VE) formulation of
the staggered solution procedure. First we examine the root locus diagram of the character-
istic equation pertaining to the fully-implicit formulation of the model system (4), noting
its essentially stable character. The PE solution procedure is then cast into a
differential-difference (DD) system that abstracts the time integration method. The analy-
sis of the characteristic equation of the DD system shows clearly that the x-limited
instability is, as expected, caused by the feedback effect of the extrapolated pressure term
into the structural equations of motion. This analysis technique has the important advantage
of providing results that are independent of the intrusion of a particular time integration
scheme; the effect of the latter is, in fact, of secondary importance. Interpretation of the
results in terms of a control process provides direct insight into techniques for the stabil-
ization of the staggered solution procedure at the differential equation level; such tech-

niques are exploited in the following section.
4.1 CHARACTERISTICS OF THE FULLY-IMPLICIT FORMULATION

We obtain the homogeneous form of the fully-implicit model system by transferring the

coupling terms in (4) to the left-hand sides, which yields

g':é+>'z+w2x

i
o

(19)

u
o

y-Xx+uy

Laplace transformation of these equations without consideration of initial conditions then

£ s2 + mz s X(s)
=9 (20)
-s s +u Y(s)

in which X(s) and Y(s) denote the transforms of x(t) and y(t) , respectively. The

yields

associated characteristic equation is therefore

(& s2 + wz) (s + u) + s2 = 0 (21)
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Figure 3 Root Locus Diagram of the Fully-Implicit System (19)
in the Laplace-Transform-Variable Space

The root locus diagram for (21) is shown in Figure 3. Because all physically relevant
branches are on the left-hand side (Re(s) <0, (19) are inherently stable equations. Con-

sequently, a stable numerical solution is guaranteed if the time integrator applied to (19)
is A-stable.

4.2 CHARACTERISTICS OF THE PE FORMULATION

A differential-difference (DD) equation [5] for the PE formulation can be obtained
by expressing the two-step predictor (13) in a delayed continuous form,

55Ct) = (L +y) ¥(t - h) - y y(t - 2h) (22)

This form is applied to the model system (4) to obtain

ER(E) + 0o x() » - (L+7) yt =~ b) + ¥ §lt - 20)
(23)

y(t) +p y(t) = x(t)
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which is the DD form associated with the single-pass PE formulation. Note that (23) is

independent of any time integration scheme. Its characteristic equation in the Laplace-

transform variable s is obtained following a procedure identical to that used to obtain (21):

ottty asp)da (A4 ey W8 o g (24)
In control theory, the identifier dead-time element is often used for terms such as e-Sh
and e_ZSh (see, e.g., [6], p. 284), which result from Laplace-transormation of time-delayed

terms. It is generally acknowledged that the occurrence of such elements in control loops

has a destabilizing effect.

In the limit of vanishing stepsize h, (24) approaches the fully implicit equation (21),
which is stable. For a finite h, it can be shown that the critical combination of param-
eters pertaining to the stability of (24) is w = p = 0, in which case (24) reduces to

pak byl &g a Tt L3 (25)
Equation (25) shows that stability is characterized in terms of three parameters: the
"buoyancy ratio" ¢ , the dead-time constant h (integration stepsize), and the extrap-
olation parameter vy . The critical component is, of course, h , which can be viewed, from
the DD-form standpoint, as the sampling rate with which pressures are evaluated and fed back
into the structural analyzer by the extrapolator (22). The destabilizing effect of the dead-

time element can be investigated by recasting (25) in the form

1+G(s) = 0 (26)

where

G(e) = P [ +y) &M -y 72N @7)

The most expedient approach for investigating the existence of unstable roots
Re(s) > 0 of a complex transcendental equation such as (26) is due to Nyquist [7]. For
the special form (26), Nyquist's criterion can be stated as follows: let the Laplace-
transform variable s encircle the entire right-hand plane Re(s) > 0 by varying s =
jv (j2 ==-1) from v=- to + =, and find the angle of G(jv) in the polar co-
ordinate system ['G(s)l , ¥ G(s)] that satisfies

$G(s) =1, |G(s)] 5] (28)
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Application of this criterion to (27) provides the two conditions

(1L +y) cos vh = y cos 2vh = 0

(29)

&€ vh/h 2 (1 + y) sin vh - y sin 2vh

For the special case Yy =0 , i.e., using the last pressure solution as the predicted value,

(29) gives the stability limit

x = h/€ < n/2 (30)

Figure 4 shows the stability limit in

the (x, y) plane as calculated from (29). The

destabilizing effect of the dead-time element is now apparent. It must be stressed again

that the stability boundary shown in Figure 4 applies only if an integration scheme of

infinite accuracy (such as an analytical integration or a nontruncated Taylor series algorithm)

is used to solve the system (23), and that the boundary is perturbed by the intrusion of a

difference time integrator. For example, the use of the trapezoidal rule as the structural

integrator increases the stability domain, as can be deduced from a comparison of Figures 1

X =ml4 \

| X=hl¢
12
X « 1,5964
max 5
67 =-0.086 e
\ UNSTABLE
41
ST 2L
l | |
| |
l ) - N — =3 y
4 5T 0 1
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Figure 4 Stability Limit of the Difference-Differential Form (24)
of the PE Formulation with the Two-Step Predictor (22)
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and 4; on the other hand, the use of the backward Euler method (not shown here) has a detri-

mental effect on stability.
4.3 SUMMARY OF MAIN FINDINGS

e The x-bounded stability of the conventional (PE, VE) procedure is due to
the dead-time (delayed) pressure feedback (22) into the structural equations
(23). This process can be viewed (in control theory terms) as a sampled-
feedback system, in which the pressure feedback is delayed by a 'hold"
(dead-time interval) equivalent to the stepsize h. This representation is

illustrated in the block diagram of Figure 5.

e The most commonly used strategy for stabilization of a system that includes
dead-time components consists of introducing a series of compensating
elements that reduce the bandwidth of the system's frequency response
(see, e.g., [8] p. 118). These stabilization techniques essentially amount

to the introduction of damping into the feedback loop.

e In the fully-implicit solution procedure, damping is inherently present by
virtue of the energy radiation term (&) in the model system (19) on the
left-hand side. The effect of the radiation damping on the structural
response roots can be readily appreciated by examining Figure 3. The
structural equation (23) of the PE procedure, however, contains no
homogeneous damping term. The addition of artificial damping to the
structural equation (23a) and/or the pressure equation (23b) in amounts

i sufficient to stabilize the solution procedure is likely to have cata-

7 strophic effects on solution accuracy. We are therefore motivated to

attempt the restoration of sufficient damping to achieve overall stability

through appropriate rearrangement of the original governing equations.
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SECTION V

STABILIZATION

The foregoing results clearly suggest that the staggered solution procedure may be
stabilized by the addition of damping terms into the left-hand side of the governing
equations of motion. As the use of artificial damping is ruled out by accuracy considerationms,
it follows that the governing equations must be tailored in such a way that homogeneous
damping terms either appear in the structural equations, or be added to the fluid equations,
or both. We now proceed to describe three stabilized formulations generated through such

"damping augmentation'" techniques.
5.1 PRESSURE-INTEGRAL EXTRAPOLATION (PIE) FORMULATION

The homogeneous portion of the structural equations for the fully-implicit solution
procedure (19) effectively exhibits damping due to the simultaneous velocity (x) feed-
back from the coupled pressure equation (19). On the other hand, the structural equation
for the PE formulation (23) is excited by a time-lagged velocity feedback; a destabi-
lizing effect occurs because of the delayed energy dissipation in the feedback loop (cE.
Figure 5). We can correct this situation by eliminating the time-lagged velocity feed-

back; this is accomplished mathematically by combining (4a) and (4b):
= 2 2 5
EX+w x = -y = = (kx-uy) (31)
which, upon transferring the damping term (%) to the left-hand side, becomes

LR M g = By (32)

e

The solution procedure based upon (32) along with the original pressure equation (4b) will

4 be called the pressure-integral extrapolation (PIE) formulation, inasmuch as the pressure-

p integral y is involved in the prediction process.
5.2 DISPLACEMENT EXTRAPOLATION (DE) FORMULATION

Stabilization can also be achieved by augmentation of the fluid equation so as to

TR

increase the pressure decay rate in the homogeneous system. Qualitatively speaking, this
strategy works as long as the stability "margin" of the modified pressure equation over-
whelms the destabilizing effect of the structural equations. The modified pressure

equation is obtained by the substitution of (4a) into the time-differentiated (4b):

i

FHuy = % = - @+’ 0/ (33)
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which can be rearranged to form

S LE) § =~ - xlE (34)

The solution procedure based upon (34) along with the original structural equation (4a) will

be called the displacement extrapolation (DE) formulation.

5.3 OTHER FORMULATIONS

The three formulations of the model problem described so far are collected in Table 2.
It turns out that additional, more complicated, formulations may be constructed. As these
have not been found to possess any particular advantage over the two preceding formulations,

they will not be discussed here.

TABLE 2. Model Formudations for Staggered Solution Procedures

Formulation Model Equations Exéﬁ:ﬁzii;ed
Pressure E R % 2 Gl s
Extrapolation e L y
PE
(PE) y+tuy=x
o : 2
Pressure-Integral Ext+tx+o x=uy y
Extrapolation
(PIE) y+uy =x
: G g :
1 Displacement £1% tEldn o= =y X
: Extrapolation 2
(DE) v+ & . w
— + = e X
i yrGEEwy G

-
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SECTION VI
ITERATION CONVERGENCE OF STABILIZED FORMULATIONS

The iteration convergence properties of the stabilized formulations derived in the
foregoing section may be studied with a technique similar to that used to analyze the

iterated PE scheme (11). The convergence conditions are collected in Table 3.

It is easily shown that the spectral radii for the two augmented schemes are less than
unity over the entire feasible domain (0 to + ®) of the parameters x , @ and ¥ . The key
significance of this result is: if the solution is iterated to convergence at each time
step, the solution of the fully-implicit scheme is recovered (cf. Figure 2). With such con-~
vergence guaranteed, we have now at our disposal a feasible computational strategy by which
unconditional stability can be attained within the basic organization of the staggered solu-

tion procedure.

TABLE 3. Iteration Convergence Characteristics of Staggered Solution Procedures

v 1ati Spectral Radius, «k , of Iteration Matrix
e e Iteration converges if «k < 1.
PE B x/[(1+82aY) A+e vl
X X y
PIE BB x Y/I(L+8 ¥) (1+8 x+8% 0]
y X y X X
2 2 2 .2
Q" /I +B8 Y+ 8 1+8°Q
DE ByBxx [( ” y><)( < ]

6.1 SELECTION OF A PREDICTOR

A wide variety of predictor formulas can be used in the practical implementation of the
stabilized procedures. The ideal formula should be able to provide satisfactory extrapola-
tion accuracy for physically meaningful response components without jeopardizing the temporal
stability characteristics; this is indeed a delicate compromise. The following considera-
tions are aimed at restricting the class of admissible formulas to predictors that exclude
"historical derivatives'. A predictor that includes derivatives of past solutions intro-
duces large extrapolation errors in both high-frequency structural response components
(2 > > 1) and rapidly-decaying pressure response components (Y > > 1) . Table 3 shows
that, as either x ¥ or ¥ Qz becomes large, the corresponding spectral radii approach
unity. On the other hand, for low-frequency components, i.e., as either x or ¥ and/or
2 tend to zero, all spectral radii approach zero. This means that extrapolation errors
committed for "noise'" components of the response (i.e., those with large Y and/or Q ) will

decrease very slowly with increasing iteration index.

26




’ We therefore restrict our considerations to predictors that are less prone to "excite"

noise components. The following three-step, two-parameter family can be considered suf-

ficient for our envisioned applications:

z: = [A+y) A-vy) +3v,)z

- [ - Yy) v, +3 Y,) 2ot Yy 2 3

where 2z stands for the solution-state term being extrapolated. Special cases of (35) are

listed in Table 4.
6.2 SINGLE-PASS STABILIZED PROCEDURES

The difference equations for the single-pass PIE formulation are [cf. (T2)]

By 2 (0) X X
E X = Bx X Y b 2 + (1 + Bx X) hn + Bx h hn

x 'n
(36)
1) _ 1) _ . x y
Ey ¥ By (x hn)/Bx * I
where yéo) is predicted by means of (35),
2 -2
Ex = 1+ By % #* Bx Q (37)
TABLE 4. Predictors Considered for the Present Study
Case Parameters Order of Accuracy
P
) I Yy b 0 Zero order
.
11 Y, = i/2, Y, = (0] Improved zero-order
i 111 Yy - L Yy = 0 First order
i 1V Y = L Y, = 1/2 Improved first order?
v Yy = 1 Y, = ~2/3 Lease-square fit
8This formula is the basis of the widely used Houbolt integrator (9)
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and Ey is given in (12b). The temporal stability of (36) may be examined by seeking a

nontrivial solution of the form

Rt A 38)
s el
where z = (x, X, ¥, y)
and requiring a bounded solution for (36), viz,
(o st (39)

Difference equations similar to (36) may also be obtained for the DE formulation. Evaluation
of the stability condition (39) for various time-integrator/predictor combinations leads to
tedious algebraic manipulations (Appendix C). Table 5 summarizes the results for the single-

pass implementation of the formulations listed in Table 2.

TABLE 5. Stability Characteristics of Single-Pass Solutions

Formulation Stability Properties
Pressure Extrapolation (PE) X < 4 for trapezoidal rule?
Pressure Integral Unconditionally stableP for
Extrapolation (PIE) predictor cases I, IIC¢
Displacement Unconditionally stableb for
Extrapolation (DE) predictor cases I, 111€ when
trapezoidal rule is usedd

35ee Figure 1.

b"Unconditionally stable" means temporal stability for any feasible
combination of physical parameters and integration stepsize.

€See Table 4.

dAllowable predictors depend on integration method used.
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6.3 OBSERVATIONS ON SINGLE-PASS SOLUTION STABILITY

The single-pass stability properties listed in Table 5 account for the combined effects
of the predictor and the time-integrator. The results indicate that the two augmented formu-
lations are capable of delivering stable single-pass solutions provided that the extrapola-
tion accuracy is suitably restricted. Such restrictions are, in general, affected by the
integration method. For example, application of the trapezoidal rule to the DE formulation
limits the extrapolator accuracy to first order (case IV of Table 4), whereas the application
of an A-stable backward-difference scheme allows the use of all of the predictors listed in
Table 4.

We recall that the two stabilized formulations can, if iterated to convergence, attain
the unconditional stability of the fully-implicit solution procedure (cf. Table 3 and Figure
2), regardless of the choice of extrapolator. This observation raises again the issue of
finding a cost-minimization compromise between a single-pass solution process with small
time increments and an iterated solution process with larger time increments. A resolution
of this issue must await the accumulation of experience in the application of these new

techniques to actual linear and nonlinear fluid-structure interaction problems.

Finally, it should be mentioned that stability analyses of the differential-
difference equations pertaining to the single-pass PIE and DE formulations were also per-
formed using integral-transform techniques similar to those used for the PE formulation.
These analyses provided valuable insight into the sensitivity of the stability character-
istics to the various parameters appearing in the model formulations. The results will not
be reported here, however, because of the length and complexity of the algebraic manipula- |

tions involved.
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SECTION VII
NUMERICAL EXPERIMENTS

A series of numerical experiments was conducted with dual objectives: to verify the
predictions of the convergence and stability analyses, and to assess the global accuracy
of the staggered solution procedures. We have adopted a direct accuracy assessment over an
analytical accuracy analysis, as the former provides an overall (global) measure of accuracy,
which results from the combined effects of integration algorithm and implementation form [10],

as well as extrapolation process. The accuracy measure chosen for the present study is

N N 21 1/2
e = |GG -0 1T ED (40)
i=1 i=1

E C ’
where the superscripts () and () denote the exact and computed solutions at the dis-
crete time station t = ti , respectively, and N is the total number of time steps taken
to evaluate ¢ . The exact solutions were obtained by using the characteristic roots of

the fully~implicit procedure (21) and applying the initial conditions

x(©) = (€ /)’
x(0) = 1
§0) = g

These values produce reasonably scaled response histories for all three response variables

of interest.

A number of implicit, one-derivative, A-stable LMS methods were used for the numerical

solution of each of the (4), among them being the trapezoidal rule and the backward-

o ciiad

difference operators of Park [11] and Gear [12]. In the results to be presented here, the

-

1 trapezoidal rule was used to advance the structural response while the Park three-step
method was applied to the solution of the fluid equation.
* Error comparisons after 20 steps were made for the structural displacement x(t) and

velocity x(t) as well as the fluid pressure y(t) ; however, only the displacement results

will be shown. Accuracy assessments were carried out for the parameter range

1< x < 104 0.0 = & < 1.0, 0.0001 = ¥ < 0.1,

with the results being relatively insensitive to V¥ . For this reason, comparisons are

shown here only for ¥ = 0.1, which value usually produced the greatest error.

30




D P A R A AN T RS 1 A TS B A e W

Figure 6 shows a comparison between the pressure integral extrapolation scheme, denoted

PIE :
X , versus the displacement extrapolation scheme, denoted by xDE . In each case a

by
two-step standard linear extrapolation method (case III of Table 4) was used. Although the
PIE solution displays superior accuracy, this scheme violates the practical requirement
(justified in the following section) that the structural equations be left unchanged. It is
therefore important to show that the accuracy of the DE scheme can be improved without
incurring a substantial increase in computation time. Two immediate ways of accomplishing
this objective are: the use of a three-step extrapolation method (case IV of Table 4),

and the performance of one iteration on the fluid equation solution. The latter effectively

amounts to an additional half-pass through the solution strategy.

As the integration of the structural equations normally controls the computation time
in large-scale problems, this additional iteration can be carried out with a modest increase

in the total run cost.

The resulting improvement in the accuracy of the DE procedure is shown in Figures 7 and
8, where the first subscript indicates whether a two-step or a three-step extrapolation
method is used and the second subscript denotes the number of iterations made on the fluid

: S ; DE . ; :
equation. Hence is identical to x in Figure 6. As can be seen, the solution

xDE
2,0

accuracy is more sensitive to the extrapolation scheme used; however, the value of applying

one iteration to the fluid equation is also apparent. Similar accuracy improvements were

observed for the velocity and pressure components of the solution.
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Figure 6 Global Error for PIE and DE Forms
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Figure 7 Global Error for Improved DE Forms, x =1
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Figure 8 Global Error for Improved DE Forms, x = 10
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SECTION VIII
IMPLEMENTATION CONSIDERATIONS

Thus far we have concentrated on stabilization of the staggered solution procedure; we
have succeeded in developing several stabilized forms of the two degree-of-freedom system (4).
Application of the two formulations of greatest interest to the original matrix system (1)
provides the equations shown in Table 6. Before selecting one of these formulations for
implementation in a fluid-structure analysis code, it is necessary that we discuss the

practical implications associated with such a decision.

If there were no a priori constraints with regard to software development, i.e., the
program developer had complete freedom to construct both the structural and fluid analyzers
from scratch, the overriding selection factor would probably be the accuracy characteristics
displayed by each formulation. As it is, there now exist many large-scale linear and non-

linear structural analyzers that incorporate capabilities for transient response analysis.

TABLE 6. Matrix Implementation Forms for Stabilized Procedures

Formulation Implementation

Pressure Integral
Extrapolation (PIE)

13<4
=
+
~~
o
+
©
0
1]
>
=
~—
e
e
IR
e
L}

=T A (BI -pc ﬁl) +p e T A 5;1 Agq
Aa+ocAN Ag=oca@ a-uh
Displacement Mu+Du+Ku=£f +r-TA (q + RI)
Extrapolation (DE)
=1 s
Ad+oc @M A+ANCM a=-pcpi
~ocAN AR
- -1 T
PP o -
tpcABTE T G *2-Ri-kD

where MC=¢c' @a"uD ¢,

1i{g]

]
1]
3

Inspection of Table 6 reveals that only the DE formulation has no impact upon the
structural equations of motion, while the PIE formulation (as well as the other, more com-
plicated, formulations) requires the addition of a damping term, p c T A IT , to the left-

hand side of the structural equation. This term can be expected to have an adverse effect
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upon the sparseness characteristics of the dynamic coefficient matrix [the multi-degree-
of-freedom analog of Ex in Eqs. (11) and (36)], because each fluid boundary eliment on
the contact or "wet'" surface B will normally overlap several structural elements . Addi-
tional nonzero coefficients then appear outside the 'profile" of the structural stiffness
matrix in entry positions pertaining to the wet structural displacements on B. As matrix
connectivity characteristics are generally controlled by the structural grid information,
extensive and expensive software modifications would be required to include such a damping

tern in existing 'dry-structure' analyzers.

For the analysis of linear structures, a general-purpose, stand-alone integration
package based on available A-stable LMS methods could be built for the PIE and other
formulations, which would accept, as input data, preprocessed matrices assembled by existing
linear structural analysis codes (with, perhaps, some restrictions on sparse-matrix storage
formats). However, for structures exhibiting nonlinear behavior, such an undertaking would
necessitate the coupling of the nonlinear solver with the dedicated integration package to
provide continuously updated information in the form of factored matrices, pseudo-force
vectors, and the like. In this case, the driving consideration would certainly be preser-
vation of the autonomy of the structural analyzer, a restriction that precludes the use

of either the PIE or other forms.

An additional argument that reinforces this conclusion is the fact that the DAA is
only the lowest-order member of a family of surface interaction approximations [3]. The
next member of that family is characterized by a second-order matrix ODE that would replace
(1b). The inclusion of a higher derivative of the scattered pressure has the effect of
adding widely-connected matrix terms to both the damping and stiffness matrices in the

structural equations if the equivalents of the PIE and other formulations are adopted.

In summary, it seems clear that the displacement extrapolation formulation is the
only stabilized procedure that satisfies the practical requirements of modularity and

avoids the proliferation of special-purpose versions of existing structural analyzers.

+The fluid discretization can be much coarser than the structural discretization because
the calculation of spatial displacement gradients is only required for the structural
model in order to obtain strains and stresses.
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SECTION IX

]
I CONCLUDING REMARKS |

The original goal of this investigation was to find an optimal implementation of the
staggered solution strategy for the structure/DAA equations, with the model equations(3) 1
or (4) as a point of departure. It was hoped that such an implementation would display
adequate stability and accuracy properties to provide a suitable alternative to the fully-
implicit (simultaneous-solution) approach, but without the computational drawbacks of the
latter. Although that goal was attained beyond our expectations, the study guidelines had

to be frequently redefined along the way.

It is a common attribute of intricate research projects that essential ingredients of
the problem, i.e., those aspects crucial to success or failure, are seldom recognized in
advance. The work reported here is no exception. An extensive initial series of parametric
studies aimed at extending the stability limit of the conventional staggered solution
procedure failed to yield satisfactory results. When attempts to introduce artificial
damping terms proved fruitless, and when we were seriously considering the adoption of i
explicit integration methods, the augmentation concept was tried, which led to the deri-
vation of the PIE formulation. That serendipitous discovery prompted a systematic develop- |
ment of other formulations and the final selection of the displacement extrapolation 4

formulation.

The interpretation of staggered solution procedures from the viewpoint of control
theory emerged in final form as this report was being prepared. This interpretation is |

deemed important for a variety of reasons:

e The effects of the predictor can be incorporated into differential-difference

equations, thus isolating the effects of the integration method. (The latter
can in fact be included, if desired, by adjoining to the characteristic

1 determinant terms resulting from a Laplace-transformation of the integration

operator [13].)

e A large body of control theory techniques, such as frequency bandwidth redu-tion,

damping augmentation, etc., can be applied to the stabilization of the system in

NPT

transform space, and such remedies reverted to the time domain and interpreted

in terms of computational procedures; see, for example, [14, 15].

® A block representation, such as the one shown in Figure 5, provides a convenient

framework for setting up parameter studies using a digital or analog computer.

e The interpretation is applicable to general classes of coupled field problems,

rather than being confined to fluid-structure interaction analysis.
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With regard to the last of these, there is presently a growing interest in the application of
computerized analysis methods to a host of problems that are modeled through coupled-field
evolutionary equations arising in geomechanics, biomechanics, thermoelasticity and
magnetohydrodynamics, to cite only a few. Staggered solution procedures appear parti-
cularly attractive when software modules (analyzers) are available for processing the
individual uncoupled problems. These modules can be connected to form a serially-
executable "analyzer network' through interfacing mechanisms based on the prediction of
appropriate subsets of the complete solution vector. Stabilization of these mechanisms

at the governing ODE level is most effective for avoiding "delayed feedback' instability.
Once satisfactory stabilized formulations are synthesized, accuracy and implementation

considerations can be used to select the most desirable formulation and associated extra-

polation formulas.
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APPENDIX A

DERIVATION OF MODEL EQUATIONS

Consider the following form of the homogeneous s

ystem (2)

Mi+Ku = T &4
(a-1)
Ad+tecBg = pcAl &
in which B = A g; A . Equations (A-1) are obtained upon setting D=0 (no structural
damping) and premultiplying the fluid equation by QT g;l = A M} ; the latter operation

makes the coupling matrices in the right-hand side of
The symmetric algebraic eigenproblems associated with

=2

(—wi M 5)

=

A+ B) q.

A,
‘ 3 =]

The wu. (also call

i are the dry structural modes

The q,
gﬂ

W are fluid

undamped natural frequencies i -

(A-1) the transpose of one another.

the left-hand side of (A-1) are

=1, n
s
(A-2)
=TS nf
ed in vacuo modes) pertaining to the

boundary modes associated with the

pressure-decay exponents Aj =0 uj (These fluid

modes are discrete analogs of the

eigenfunctions of the added mass tensor associated with the Laplace equation, subject to

appropriate orthonormality conditions with respect to

with (A-2), we introduce the transformations

u Sw; =
o

q

where the matrices
respectively, lined up as columns of unit length, and

associated mode amplitudes (generalized coordinates).

e T )
my Wtk w S LAES
ag +ockg = pcE AL §

where Es » hs » 3@ and D are diagonal matrices of

surface area [16].) In accordance

Eg LR

S and F are formed with the dry-structure and fluid-boundary modes,

the vectors w and g collect the

The transformed system (A-1) is then

(A-4)

generalized quantities:




51

b = EBE = 2 M, D a-2am a

Although the left side of (A-4) is uncoupled, each dry structural mode will, in general,
be coupled to each fluid boundary mode through the right-hand side terms. Consequently, for
each mode pair u; qj , we obtain a two degree-of-freedom system in the associated gen-
eralized coordinates w, and gj

T TR R T

(A-6)

a, g.+pehb, g
R Sl B

]
©
0
[
£

In (A-6), the ¢&j are modal coupling coefficients between the i-th structural mode and

the j-th fluid boundary mode, i.e.,

i It
By 6 LRy, Lk
= 2 @a-7)
] qT Agq Ta q
29 2 =
= ol
where ., = u L (A-8)
i ey
We will now show that | wij | <1 if all entries of the structure-to-fluid grid

transformation matrix are nonnegative (a restriction that can always be met by using

appropriate "area-lumping" schemes). Equilibrium of forces normal to the contact surface

demands that the sum of entries, tkl of each column gz of T be unity:
n
s
E tkl = Z | tk‘l l i (A-9)
k=1 k
Hence
2 T g
he Iy = 52915(2 Itkll) = e
k
Using the norm inequality ||§T y < x| le’ we can easily show that l !1II2 <1 .
A-2




P

g

Now from (A-7) we obtain

T
(q; ¢,. - r Aq. =0 A-11
9 95 -1) 24, ( )
As A 1is positive definite and g_j is not identically zero, it follows that the vector in
parenthesis must be orthogonal to A gj . Premultiplying that vector by g§ and solving

for qoij , we obtain the desired result

9 5 T
o, = L% - q:r, <1 (A-12)
ij It e
q: q,
=J ]
Eq. (A-12) indicates that setting ‘pij =1 in (A-6) implies a conservative assump-

tion on the modal coupling, which is the essential source of stability difficulties in the
staggered solution procedures. The worst modal coupling case, i.e., ¢ij =1 , occurs when
both structural and fluid boundary modes coincide, as in the case of breathing motions of a
submerged spherical shell. Assuming identical surface grids for this case, we have

gi=gjz=£ and wij=1.
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A-3
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APPENDIX B
SUBMERGED SPHERICAL SHELL

To get an idea of the range of values assumed by the various parameters that appear
in the study of the staggered solution procedures, it is instructive to study a closed, thin
spherical shell submerged in an infinite fluid. The dry-structure and fluid-boundary modes
for the continuum problem coalesce and can be analytically expressed in terms of Legendre
polynomials in cos 6 , 6 being the meridional angle. An analysis of the modal spectrum
[17] pertaining to axisymmetric modal motions with n circumferential waves gives for the

generalized structural mass, stiffness, fluid mass and contact areas,

2 2
Mo = Anps tr” [l +n (n + l)cn] /(2 n+ 1)
k =m Bz
sn sn sn
(B-1)

me, = 47p r3 /[(n+ 1) (2n + 1)]

2
an =41 " / (2n + 1)

where L t and r are the shell density, thickness and radius, respectively, asn
denotes modai natural frequency [not to be confused with the reduced frequency w defined in

(5b)] and Cn are ratios of tangential to radial modal amplitudes, given by [18, Ch. 10]
N2 2
cn=(1+v)/[—mn+n +n+ (1-v)] (B-2)
where v 1is Poisson's ratio, and the &n are dimensionless in-vacuo natural frequencies

(mh normalized to cs/r s Cg being the plate velocity for the shell material). The

dimensionless parameters & , w and u can be obtained from Eqs. (5), in which 2 = r ,

as
E =[l4+n(n+1) czlpt/pr)
n n s
Y
w, = £ W cS/c
un = n+1

Values of £ , w and u are compiled in Table 7 for a steel shell in water (cS/cs§3.53,
os/p ~ 7.67, v = 0.30) with a thickness-to-radius ratio of 0.01. The lower (upper)

eigenfrequency branch embodies predominantly flexural (membraae) motions.

B-1
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Note that the lowest values of these parameters are determined by physical and geometric
characteristics of the fluid-structure problem, whereas the high values are determined by
truncation of the modal spectrum. For the discrete model, the largest values are essentially
functions of the mesh fineness. These considerations should be helpful in the order-of-

magnitude assessment of the parameter value range for more complex problems.

TABLE 7. Values of & , w, and p for Some Axisymmetric

Modes of a Steel Shell in Water with t/r = 0.01
Mode Order
A
Branch n Cn W En w, o
Lower 1 1.000 0 0.230 0 2
2 0.270 0.701 0.110 0.821 3
3 0.123 0.830 0.091 0.882 4
a>>1 a2 ~1-1/2n ~0.077 ~0.977 n+ 1
Upper O 0 1.61 0.077 0.977 ]
1 -0.500 1.98 0.115 2.37 2
2 -0.616 2D 05251 4.81 3
3 -0.680 3.64 0.502 9.10 4
1
n>>1 ~-n/n+l ~(n2 + 3)'5 ~0.O77n2 ~0.98n2 n+1
B-2
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APPENDIX C
A STABILITY ANALYSIS OF THE PIE FORMULATION

Let us write (6) and (7) as

b (z k) -8z ) = 0, k=1,--,m. (c-1)
where
m m
e (Z, ) = Z“k CEE LR =E k fn-k et
k=0 k=0

and the PIE model equations in Table 2 as

0 1 0 -1 0 O 0
. 2 E -
£ 0 0 Zn + 1 w -y Zn = 0 (Cc-3)
0o 0 1 0 0 P
n
s T
where L= WX, %, Y

For illustrative purposes, introduce the first-order extrapolator [see (35) and
Table 4].

(c-4)
0
Zn-k) =4 0 (C-5)
G
o(xn-k)
o(X) _gn_m =0 (C-6)
——e——




where

from

There
absen

wh ,

resul

m m
P = D A" ey =Y gat (c-7)
k=0 k=0

Now a nontrivial solution of (C-6) exists only when

6 3 .0 = 0o o
det 6 ol sy+3 [ 1 o =ull sy L =B (c-8)

v

o
[=
—
|
> N

1
-7’0’11
A
which we obtain the following characteristic equation

30 +85 00 () o ) [o(x) < g—" ) @ - 1)/A2]

32 2 2 2
S o) + ot ey + FeP) o) + S22 00 P = 0 ©-9) |

fore, the search for unconditional stability is reduced to determining the complete
ce of any root of (C-9) with magnitude greater than unity for all possible values of
ph , and h/f in combination with the time integrator and extrapolator used. The

ts of such determinations are summarized in Table 5.
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